
Lab 6: Creating ActiveX Clients
For background information on this lab, click each of these topics.

Objectives
In this lab, you will use Automation to control and exchange information with Microsoft Excel
and Microsoft Access.

After completing this lab, you will be able to use Automation to:

 Open a Microsoft Excel workbook.
 Change information on a worksheet.
 Create a chart from worksheet information.
 Open a Microsoft Access database.
 Use Microsoft Access to open a report based on parameters of your Visual Basic application.

Prerequisites
Before working on this lab, you should be familiar with the following concepts:

 The major constructs of COM
 The major constructs of Automation.
 Fundamentals of the Automation objects in Microsoft Excel.

Lab Setup
To complete this lab, you should have the following setup:

 Visual Basic, version 5.0, or later.

To see a demonstration of the completed lab solution, click this icon.

Estimated time to complete this lab: 60 minutes

Note There are project and solution files associated with each lab. If you installed the labs
during Setup, these files are in the folder <Install Folder>\Labs on your hard disk. If you did not
install the labs during Setup, you can find them in the \Labs folder of the Mastering Microsoft
Visual Basic 5 CD-ROM.

Exercises
The following exercises provide practice working with the concepts and techniques covered in
Chapter 6.

Exercise 1: Controlling Microsoft Excel
In this exercise, you will control Microsoft Excel using Automation.

Exercise 2: Creating a Client Application
In this exercise, you will create a client application that uses the functionality of a version of the
Credit Card component, which is created in later chapters.

Exercise 1: Controlling Microsoft Excel

In this exercise, you will control Microsoft Excel using Automation. A Microsoft Excel workbook
named Earn.xls has been created for you and is located in the <Install Folder>\Labs\Lab06
folder.

A portion of the workbook is shown in the following illustration. Note that the cells C3 and C4
have been named “Growth” and “Inflation,” respectively. Also, cells C16:E16 have been named
“Net_Profit.”

 Create a project
1. Start a new Visual Basic project.
2. Modify Form1 to resemble the following:

If you do not want to build the form, you can get a copy of it in the <Install Folder> \Labs\
Lab06 folder.

3. Save the project as XLAuto.vbp in the \Lab06 folder.

 Create an instance of the Microsoft Excel application object
1. Add a reference to the Microsoft Excel 5.0 Object Library.
2. Dimension module-level variables named xl and xlChart.
3. In the Click event procedure for the Create XL Object button, use the CreateObject function

to create an instance of the Microsoft Excel Application object, and assign that object to the
variable created in the previous step. For more information see Creating an Instance of
Microsoft Excel.

4. Set the Visible property of Microsoft Excel to True.
5. Use the Microsoft Excel Open method to open Earn.xls.

To see sample answer code, click this icon.

Private Sub cmdCreateXLObject_Click()
set xl = CreateObject("Excel.Application")
x1.Workbooks.Open App.Path & "\Earn.xls"
xl.Visible = True

End Sub

6. Test the application.
7. Exit.

 Send information to Microsoft Excel
1. In the Click event procedure for the Estimate Earnings button, activate the Earnings

worksheet and set the values of cells Growth and Inflation to the values of the Growth and
Inflation text boxes, respectively.
To see sample answer code, click this icon.

Private Sub cmdEstimateEarnings_Click()
xl.Worksheets("Earnings").Activate
xl.Worksheets("Earnings").Range("Growth").Value = txtGrowth.Text
xl.Worksheets("Earnings").Range("Inflation").Value = _

txtInflation.Text
End Sub

2. Test the application.

 Run the application.
 Click the Create XL Object button to start Microsoft Excel and open the workbook.
 Switch to Visual Basic, enter percentages in the text boxes, and test the functionality of

the Estimate Earnings button.
3. Exit Microsoft Excel.

 Create a chart
1. In the Click event procedure for the Chart Earnings button, if the xlChart variable added

above is Nothing, use the Select method to select the named Range Net_Profit of the
Earnings worksheet.
Note In these steps, you should use the xl module-level variable so it can be used from
within all procedures in this exercise.

2. Use the Add method of the Chart object to create a new chart in the workbook and initialize
xlChart.

3. Set the Type property of the Chart object to xl3DColumn. This is a constant in the Microsoft
Excel object library.

4. If the xlChart variable is not Nothing, use the Activate method to make it the active sheet.

To see sample answer code, click this icon.

Private Sub cmdChartEarnings_Click()
If xlChart Is Nothing Then

xl.Worksheets("Earnings").Range("net_profit").Select
set xlChart = xl.Charts.Add()
xlChart.Type = xl3DColumn

Else
xlChart.Activate

End If
End Sub

5. Test the application.

 Run the application.
 Click the Create XL Object button to start Microsoft Excel and open the workbook.
 Switch to Visual Basic and click the Chart Earnings button.

 Exit Microsoft Excel
1. In the Click event procedure for the Exit button, use the Close method to close the

ActiveWorkbook object.
2. Use the Quit method to close Microsoft Excel.
3. Unload the form and end the application.
4. Test the application.

 Run the application.
 Click the Create XL Object button to start Microsoft Excel and open the workbook.
 Switch to Visual Basic and click the Exit button.

5. Save the project.

Exercise 2: Creating a Client Application
In this exercise, you will create a client application that uses the functionality of a version of the
Credit Card component created in later chapters. This component has been created for you in
the folder <Install Folder>\Labs\Lab06. This exercise adds an interface to that component.

This version of the Credit Card component exposes two interfaces that provide the following
properties and methods:

1. The default interface validates the purchase of an item with these properties and methods.

Name Type

CardNumber Property
ExpireDate Property
PurchaseAmount Property
Approve Method

2. The IManage interface, which uses the following property, is used to change the credit limit
of a client.

Name Type

CreditLimit Property

This interface would require some level of security to make use of its functionality.

 Register the component

1. Locate the file cc.dll, which contains the credit card component.
2. Use RegSvr32.exe to register the component with your system.

 Create a project
1. Start a new standard project in Visual Basic.
2. Modify the default form to look like the following:

3. Save the form as frmClient in the Lab06 folder.
4. Save the project as CCClient in the Lab06 folder.

 Use the default Automation interface
1. Add a reference to the CreditCard component.
2. Dimension a form-level variable named cc as type Lab.CreditCard, as shown in the following

code:
Public WithEvents cc as Lab.CreditCard

Make sure it can receive events.

3. In the Form_Load handler, create a new instance of the CreditCard component, as shown in
this code:
Set cc = New Lab.CreditCard

4. In the Click event procedure for the Approve command button, add the following code:
cc.ExpireDate = "1/1/99"
cc.PurchaseAmount = 50
cc.CardNumber = 1234
MsgBox cc.Approve

5. Press F8 to step through the code.
When you set the PurchaseAmount property and call the Approve method, you step into
the CreditCard project.

6. Try changing the value of PurchaseAmount to 2000. Does the Approve method return a
value of False?

 Use the IManage interface
1. Add a second form, frmManage, that resembles the following:

2. Add a form-level variable of type IManage., as shown in this code.
Private mng As IManage

3. In the Form_Load handler, use the CreditCard object variable in frmClient to get a pointer to
the IManage interface.
On Error Resume Next
Set mng = frmClient.cc
If mng Is Nothing Then

MsgBox "The IManage interface is not supported on this object."
Unload Me
Exit Sub

End If
lblOldLimit = mng.CreditLimit
txtNewLimit = ""

4. In the Click event handler of the OK command button, use the CreditLimit property of the
IManage interface to reset the credit limit based on the value provided by the user in the
New Limit text box and then unload the form. This code is shown as follows:
If IsNumeric(txtNewLimit) Then

mng.CreditLimit = txtNewLimit
Unload Me
Exit Sub

Else
txtNewLimit.SetFocus

End If

5. In the Click event handler for the Cancel command button, unload the form.
6. In the GetFocus event for the New Limit text box, add the code to highlight the existing text.
Private Sub txtNewLimit_GotFocus()

txtNewLimit.SelStart = 0
txtNewLimit.SelLength = Len(txtNewLimit)

End Sub

7. Switch to frmClient, and add a handler for the Manage command button Click event that
shows the frmManage form as a modal window.

8. Save and test the application.
9. Validate the IManage interface by setting a breakpoint on frmClient when showing the

frmManage form and stepping through the code.

 Unregister the CreditCard component
Unregister this version of the CreditCard component to remove the references stored in the
registry. This does not modify the DLL itself in any way.
1. Run RegSvr32.exe against the component cc.dll once again, but add the /u parameter, as

shown in this code:

Regsvr32 /u cc.dll

	Lab 6: Creating ActiveX Clients
	Exercise 1: Controlling Microsoft Excel
	Exercise 2: Creating a Client Application

